Immobilization of a molybdenum complex with tetradentate ligand on mesoporous material MCM-41 as catalyst for epoxidation of olefins

Authors

  • F. Salimi Faculty of Chemistry, Islamic Azad University, Ardabil branch, Ardabil, Iran
  • P. Eghbali Faculty of Chemistry, Islamic Azad University, Ardabil branch, Ardabil, Iran
Abstract:

Covalent grafting of MCM-41 with 3-chloropropyl trimethoxysilane and subsequent reaction respectively with acacdien and complexation with MoO2(acac)2 afforded MoO2acacdien@MCM-41. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properties of the support as well as accessibility of the channel system despite sequential reduction in surface area, pore volume and pore size. Elemental analyses showed nearly complete complexation of the supported ligands and the presence of 0.24 mmol molybdenum per gram of the catalyst. Epoxidation of cyclooctene, 1-hexene and 1-octene in the presence of MoO2acacdien@MCM-41 with tert-butyl hydroperoxide (TBHP) were carried out with relatively good conversion in the mild reaction conditions. morphology of product because the organic ligands around yttrium center act like a protecting agent to prevent agglomeration.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

immobilization of a molybdenum complex with tetradentate ligand on mesoporous material mcm-41 as catalyst for epoxidation of olefins

covalent grafting of mcm-41 with 3-chloropropyl trimethoxysilane and subsequent reaction respectively with acacdien and complexation with moo2(acac)2 afforded moo2acacdien@mcm-41. x-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properties of the support as well as accessibility of the channel system despite sequential reduction in surface area, pore vo...

full text

Immobilization of Cu(II)-Histidine Complex on Al-MCM-41 as Catalyst for Epoxidation of Alkenes

Cu(II) complex with L-histidine (His) ligand, immobilized within Al-MCM-41, designated as Cu(His)2/Al-MCM-41 was prepared and characterized by powder X-ray diffraction (XRD), nitrogen adsorption desorption, FTIR, UV-Vis and chemical analysis techniques. The surface area and pore volume were found to decrease after immobilization of Cu(II) complex on Al-MCM-41. It was found that Cu(His)2/Al-MCM-...

full text

immobilization of cu(ii)-histidine complex on al-mcm-41 as catalyst for epoxidation of alkenes

cu(ii) complex with l-histidine (his) ligand, immobilized within al-mcm-41, designated as cu(his)2/al-mcm-41 was prepared and characterized by powder x-ray diffraction (xrd), nitrogen adsorption desorption, ftir, uv-vis and chemical analysis techniques. the surface area and pore volume were found to decrease after immobilization of cu(ii) complex on al-mcm-41. it was found that cu(his)2/al-mcm-...

full text

Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes

A heterogeneous catalyst containing manganese Schiff base complex (derived from 2,4-dihydroxybenzadehyde and 1,2-phenylenediamine) is produced by covalent anchoring in MCM-41 matrix. The synthesized catalyst was characterized by X-ray diffraction pattern (XRD), inductivity coupled plasma (ICP), Fourier transform infrared (FT-IR) spectroscopy, N2 sorbtion-desorbtion isotherm and by tr...

full text

Modified Titanium Content in Titanosilicates Mesoporous Molecular Sieves MCM-41 as Selective Catalyst for Epoxidation of Alkenes

Ti-MCM-41 was synthesized at pH 3, 7 and 11. The titanium content was determined by AAS and found to be 4%, 3.2% and 4.5%, respectively. In order to increase the titanium content in Ti-MCM-41, Ti(IV) ions were grafted onto Ti-MCM-41 using TiCl4 in toluene and Ti(OBu)4 in ethanol. The incorporation of Ti was determined to be 28% and 30%, respectively. The oxidation of olefins such as cyclopenten...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  14- 20

publication date 2011-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023